Skip to main content
Log in

Gel combustion synthesis of fluorine-doped tin oxide and its characteristics: applying D-optimal factorial design of experiment

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Fluorine-doped tin oxide (FTO) nano-powders were synthesized by a gel combustion method. To analyse the effect of processing factors and their interactions and to achieve an equation for nano-powder particle size in terms of code factors, D-optimal factorial design was used. Stannous chloride penta-hydride, ammonium fluoride and citric acid were used to synthesize the FTO nano-powders. The structure, morphology and composition of the synthesized powders were characterized by X-ray diffraction, field emission scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The results revealed the formation of homogenous FTO nano-powders with an average particle size of 20 nm and equiaxed morphology in the concentration of precursor 0.2, citric acid to precursor molar ratio of 1 and pH of 0.5. The average particle size increased as the concentration of the precursor, citric acid to precursor molar ratio and pH increased from 0.2 to 1, 1 to 3 and 0.5 to 3, respectively. Citric acid to precursor molar ratio, concentration of the precursor and the pH had the most significant effect on the synthesis of the FTO nano-powders, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hara K, Arakawa H, Luque A and Hegedus S 2003 A Luque handbook of photovoltaic science and engineering (NY: John Wiley & Sons Ltd) p 663

  2. Fortunato E, Ginley D, Hosono H and Paine D C 2007 MRS Bull. 32 242

    Article  CAS  Google Scholar 

  3. Li B, Huang L, Zhou M and Wu B 2014 Ceram. Int. 40 1627

    Article  CAS  Google Scholar 

  4. Kawashima T, Ezure T, Okada K, Matsui H, Goto K and Tanab N 2004 J. Photochem. Photobiol. 164 199

    Article  CAS  Google Scholar 

  5. Tatar D, Turgut G and Duzgun B 2013 Rom. J. Phys. 58 143

    CAS  Google Scholar 

  6. Bhardwaj A, Gupta B K, Raza A, Sharma A K and Agnihotri O P 1981 Sol. Energy Mat. Sol. C 5 39

    CAS  Google Scholar 

  7. Naje A N, Norry A S and Suhail A M 2013 Int. J. Innov. Res. Sci. Eng. Technol. 42 7068

    Google Scholar 

  8. Farrukh M A, Heng B and Adnan R 2010 Turk. J. Chem. 34 537

    CAS  Google Scholar 

  9. Han C H, Jousseaume B, Rascle M C, Toupance T, Cacher H and Vivier V 2004 J. Fluor. Chem. 125 1247

    Article  CAS  Google Scholar 

  10. Razeghizadeh A R, Rafee V and Zalaghi L 2015 Mesoscale and nanoscale physics (cond-mat.mes-hall) 142 arXiv:1502.00219

  11. Senthilkumar V, Vickraman P and Ravikumar R 2010 J. Sol. Gel. Sci. Technol. 53 316

    Article  CAS  Google Scholar 

  12. Adnan R, Razana N, Rahman I A and Farrukh M A 2010 J. Chin. Chem. Soc. 57 222

    Article  CAS  Google Scholar 

  13. Han C H, Han S D, Gwak J and Khatkar S P 2007 Mater. Lett. 61 1701

    Article  CAS  Google Scholar 

  14. Yue Z, Li L, Zhou J, Zhang H and Gui Z 1999 Mater. Sci. Eng. B 64 68

    Article  Google Scholar 

  15. Ahmed W and Jackson M J 2009 Emerging nanotechnologies for manufacturing (UK: Elseiver Science and Technology Books)

  16. Telford J K 2007 A brief introduction to design of experiments (Washington: Johns Hopkins APL Technical Digest) p 224

  17. Antony J 2003 Design of experiments for engineers and scientists (Amsterdam: Elsevier Science & Technology Books)

  18. Leiviskä K 2013 Introduction to experiment design (University of Oulu) p 31

  19. Kehoe S, Ardhaoui M and Stokes J 2011 J. Mater. Eng. Perform. 20 1423

    Article  CAS  Google Scholar 

  20. Askari-Paykani M, Shayan M and Shamanian M 2014 J. Iron Steel Res. Int. 21 252

    Article  CAS  Google Scholar 

  21. Software Help Design-Expert Software, Version 7.1 2007 User’s guide, technical manual (Minneapolis, MN: Stat-Ease Inc.)

  22. Nekouei R K, Rashchi F and Amadeh A 2013 Powder Technol. 237 165

    Article  CAS  Google Scholar 

  23. Sikhwivhilu L M, Pillai S K and Hillie T K 2011 J. Nanosci. Nanotechnol. 11 4988

    Article  CAS  Google Scholar 

  24. Li Z, Shen W, Zhang X, Fang L and Zu X 2008 Colloids Surf. A: Physicochem. Eng. Asp. 17 327

    Google Scholar 

  25. Bruneaux J, Cachet H, Froment M, Levart M, and Vedel J 1989 J. Microsc. Spectrosc. Electron. 14 1

    CAS  Google Scholar 

  26. Riahi-Noori N, Sarraf-Mamoory R, Alizadeh P and Mehdikhani A 2008 J. Ceram. Process. Res. 9 246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Baghshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malek, S., Baghshahi, S., Sarraf-Mamoory, R. et al. Gel combustion synthesis of fluorine-doped tin oxide and its characteristics: applying D-optimal factorial design of experiment. Bull Mater Sci 42, 109 (2019). https://doi.org/10.1007/s12034-019-1769-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1769-5

Keywords

Navigation